Total number of printed pages-24

## 3 (Sem-3/CBCS) MAT HG 1/RC/HG 2 2021

(Held in 2022)

### **MATHEMATICS**

(Honours Generic/Regular)

Paper: MAT-HG-3016/MAT-RC-3016

(Differential Equations)

Full Marks: 80

Time: Three hours

The figures in the margin indicate full marks for the questions.

Answer either in English or in Assamese.

### OPTION-A

- Answer the following questions: 1×10=10
   তলত দিয়া প্রশ্নবোৰৰ উত্তৰ কৰা ঃ
  - (a) Write down the order of the following differential equation:

তলৰ অৱকল সমীকৰণটোৰ ক্ৰম লিখা ঃ

$$\left(\frac{dr}{ds}\right)^3 = \sqrt{\frac{d^2r}{ds^2} + 1}$$

(b) State whether the following differential equation is linear or nonlinear:
তলৰ অৱকল সমীকৰণটো ৰৈখিক নে অৰৈখিক লিখাঃ

$$\frac{d^2y}{dx^2} + 5\frac{dy}{dx} + 6y^2 = 0$$

(c) Form the differential equation of the family of parabolas  $y=cx^2$ .

 $y=cx^2$  অধিবৃত্ত পৰিয়ালটোৰ অৱকল সমীকৰণটো গঠন কৰা।

(d) Write down the condition under which the *n* solutions  $f_1, f_2, \ldots, f_n$  of an *n*th order homogeneous linear differential equation are linearly independent on  $a \le x \le b$ .

এটা n ক্রমৰ সমমাত্রিক ৰৈখিক অৱকল সমীকৰণৰ n টা সমাধান  $f_1, f_2, \ldots, f_n$  য়ে  $a \le x \le b$  অন্তৰালত ৰৈখিকভাৱে স্বতন্ত্র হোৱাৰ চর্ত্তটো লিখা।

(e) Determine the integrating factor of the following linear differential equation:

$$x^4 \frac{dy}{dx} + 2x^3 y = 1$$

তলৰ ৰৈখিক অৱকল সমীকৰণটোৰ অনুকলন গুণক উলিওৱা ঃ

$$x^4 \frac{dy}{dx} + 2x^3 y = 1$$

- (f) What is meant by integral curves of a differential equation?
  - এটা অৱকল সমীকৰণৰ সমাকল লেখ (Integral curves) বুলিলে কি বুজা ?
- (g) Write one special characteristic of Cauchy-Euler equation.

ক'চি-ইউলাৰ সমীকৰণৰ এটা বিশেষ বৈশিষ্ট্য লিখা।

(h) Evaluate the Wronskian of the functions

$$f_1(x) = e^x$$
,  $f_2(x) = e^{-x}$ 

$$f_1(x) = e^x$$
,  $f_2(x) = e^{-x}$  ফলন দুটাৰ Wronskian নিৰ্ণয় কৰা।

- (i) Write down the UC set corresponding to the UC function  $x^n$ .

  UC ফলন  $x^n$  সাপেক্ষে UC সংহতিটো লিখা।
  - (j) Determine the constant A in  $(x^2 + 3xy)dx + (Ax^2 + 4y)dy = 0$  such that the equation is exact.

$$(x^2+3xy)dx+(Ax^2+4y)dy=0$$

সমীকৰণটো যথাৰ্থ হ'লে, ধ্ৰুৱক A ৰ মান নিৰ্ণয় কৰা।

- 2. Answer the following questions : 2×5=10 তলত দিয়া প্ৰশ্নবোৰৰ উত্তৰ কৰা :
  - (a) Show that  $f(x) = 2\sin x + 3\cos x$  is a solution of the differential equation  $\frac{d^2y}{dx^2} + y = 0.$

State whether it is an implicit or explicit solution.

দেখুওৱা যে,  $\frac{d^2y}{dx^2} + y = 0$  অৱকল সমীকৰণটোৰ  $f(x) = 2\sin x + 3\cos x$  এটা সমাধান হয়। এই সমাধানটো অন্তৰ্নিহিত নে শুপ্ৰকাশিত (explicit) উল্লেখ কৰা।

(b) Determine the most general function N(x,y) such that the equation  $(x^3 + xy^2)dx + N(x,y)dy = 0$ is exact.

অত্যন্ত সাধাৰণ ফলন N(x,y) উলিওৱা যাতে,  $(x^3+xy^2)dx+N(x,y)dy=0$  সমীকৰণটো যথাৰ্থ হয়।

(c) Find the general solution of — সাধাৰণ সমাধান উলিওৱা —

$$\frac{d^2y}{dx^2} - 2\frac{dy}{dx} - 3y = 0$$

- (d) Solve : সমাধান কৰা ঃ  $4xy dx + (x^2 + 1) dy = 0$
- (e) Reduce the Bernoulli's equation  $\frac{dy}{dx} + y = xy^3$  to linear equation by appropriate transformation.

উপযুক্ত ৰূপান্তৰৰ সহায়ত বাৰ্নোলীৰ সমীকৰণ  $\frac{dy}{dx} + y = xy^3 \pi \ \text{(ৰেখিক সমীকৰণলৈ সমানীত কৰা )}$ 

3. Answer **any four** of the following questions:  $5\times4=20$ 

তলত দিয়াবোৰৰ যিকোনো চাৰিটা প্ৰশ্নৰ উত্তৰ কৰা ঃ

(a) Show that  $x^3 + 3xy^2 = 1$  is an implicit solution of the differential equation  $2xy \frac{dy}{dx} + x^2 + y^2 = 0$  on the interval 0 < x < 1.

দেখুওৱা যে, 0 < x < 1 অন্তৰালত

$$2xy\frac{dy}{dx}+x^2+y^2=0$$
 অৱকল সমীকৰণটোৰ  $x^3+3xy^2=1$  এটা অন্তনিৰ্হিত সমাধান হয়।

(b) If M(x,y)dx+N(x,y)dy=0 is a homogeneous equation, then the change of variables y=vx transforms it into a separable equation in the variables v and x— Prove it.

প্ৰমাণ কৰা যে, M(x,y)dx+N(x,y)dy=0 এটা সমমাত্ৰিক সমীকৰণ হ'লে y=vx চলক সলনীকৰণেৰে ইয়াক v আৰু x চলকৰ পৃথকীকৰণ সমীকৰণত প্ৰকাশ কৰিব পাৰি।

(c) Solve the following initial value problem:
তলৰ আদি মান যুক্ত সমীকৰণটো সমাধান কৰাঃ

$$\frac{dy}{dx} + \frac{y}{2x} = \frac{x}{y^3}, \ y(1) = 2$$

(d) Find the general solution of  $\frac{d^2y}{dx^2} + 6\frac{dy}{dx} + 5y = 2e^x + 10e^{5x} \text{ by the }$  method of undermined co-efficients. অনির্ধাৰিত সহগ পদ্ধতিৰে

$$\frac{d^2y}{dx^2} + 6\frac{dy}{dx} + 5y = 2e^x + 10e^{5x}$$

a Propinsi Parti (Brown) na praka na propinsi

সমীকৰণটোৰ সাধাৰণ সমাধান উলিওৱা।

(e) Solve (সমাধান কৰা) ঃ 
$$(x+2y+3)\,dx + \big(2x+4y-1\big)\,dy = 0$$

- (f) Solve the initial value problem : আদিমান যুক্ত সমীকৰণটো সমাধান কৰা ঃ  $\frac{d^2y}{dx^2} 4\frac{dy}{dx} + 13y = 0$   $y(0) = 2, \ y'(0) = 7$
- 4. Answer **any four** of the following questions : 10×4=40 তলৰ *যিকোনো চাৰিটা* প্ৰশ্নৰ উত্তৰ কৰা ঃ

Consider the following differential

- equation :  $\left(4x+3y^2\right)dx + 2xy\ dy = 0$   $\left(4x+3y^2\right)dx + 2xy\ dy = 0$  অৱকল সমীকৰণটোৰ ক্ষেত্ৰত
  - (i) Show that the equation is not exact;
    দেখুওৱা যে, সমীকৰণটো যথাৰ্থ নহয়;

(a)

(ii) Find an integrating factor of the form  $x^n$ , where n is a positive integer.

এটা অনুকলন গুণক  $x^n$  উলিওঁৱা, য'ত n এটা ধনাত্মক অখগু সংখ্যা হয়;

(iii) Multiply the equation by the integrating factor and solve the resulting exact equation.

সমীকৰণটো অনুকলন গুণকেৰে পূৰণ কৰা আৰু লব্ধ যথাৰ্থ সমীকৰণটো সমাধান কৰা।

1+3+6=10

(b) Find the general solution of সাধাৰণ সমাধান উলিওৱাঃ

$$\frac{d^2y}{dx^2} - 2\frac{dy}{dx} - 3y = 2e^x - 10\sin x$$

(c) (i) Find the orthogonal trajectories of the family of circles which are tangent to the y-axis at the origin.

মূলবিন্দুত y অক্ষক স্পৰ্শ কৰি থকা বৃত্তৰ পৰিয়ালটোৰ লাম্বিক প্ৰক্ষেপ পথ (orthogonal trajectory) নিৰ্ণয় কৰা।

- (ii) Find a family of oblique trajectories that intersect the family of parabolas  $y^2 = cx$  at an angle 60°.

  5  $y^2 = cx$  অধিবৃত্তৰ পৰিয়ালটোক 60° কোণত ছেদ কৰি থকা এটি তিৰ্যক প্ৰক্ষেপ পথ (oblique trajectory ৰ পৰিয়াল উলিওৱা।
- (d) Solve by the method of variation of parameter:

প্ৰাচল বিচৰণ পদ্ধতিৰে সমাধান কৰা ঃ

$$\frac{d^2y}{dx^2} + y = \sec x$$

(e) (i) Given that y = x is a solution of

$$(x^2+1)\frac{d^2y}{dx^2} - 2x\frac{dy}{dx} + 2y = 0$$

Find a linearly independent solution by reducing the order. 6

$$(x^2+1)\frac{d^2y}{dx^2} - 2x\frac{dy}{dx} + 2y = 0$$
 অৱকল

সমীকৰণটোৰ y = x এটা সমাধান হয়। সমীকৰণটোৰ ক্ৰম লঘুকৃত (সমানীত) কৰি এটা ৰৈখিকভাৱে স্বতন্ত্ৰ সমাধান উলিওৱা।

(ii) Show that x and  $x^2$  are linearly independent solution of equation

$$x^2\frac{d^2y}{dx^2} - 2x\frac{dy}{dx} + 2y = 0$$

Also find the solution that satisfies the conditions y(1) = 3, y'(1) = 2. 2+2=4

দেখুওৱা যে, 
$$x^2 \frac{d^2y}{dx^2} - 2x \frac{dy}{dx} + 2y = 0$$

সমীকৰণটোৰ x আৰু x² দুটা ৰৈখিকভাৱে স্বতন্ত্ৰ সমাধান।

লগতে y(1)=3, y'(1)=2 চৰ্ত সাপেক্ষে ইয়াৰ সমাধান উলিওৱা।

(f) Solve (সমাধান কৰা):

$$x^2 \frac{d^2 y}{dx^2} + 4x \frac{dy}{dx} + 2y = 4\ln x$$

(g) Consider the linear system ৰৈখিক সমীকৰণ প্ৰণালী এটা লোৱা হ'ল  $\frac{dx}{dt} = 3x + 4y$   $\frac{dy}{dt} = 2x + y$ 

(i) Show that ( দেখুওৱা যে )

$$x=2e^{5t}, x=e^{-t}$$

and ( আৰু )

$$y = e^{5t}$$
,  $y = -e^{-t}$ 

are solutions of this system (এই প্ৰণালীটোৰ সমাধান হয়)।

(ii) Show that the two solutions of part (i) are linearly independent on every interval  $a \le t \le b$ .

দেখুওৱা যে part (i) ত উল্লিখিত সমাধান দুটা  $a \le t \le b$  অন্তৰালত ৰৈখিকভাৱে স্বতন্ত্ৰ হয়।

(iii) Write the general solution of the system.

Also find the solution

$$x=f(t)$$
,  $y=g(t)$ 

for which f(0)=1 and g(0)=2.

প্রণালীটোৰ সাধাৰণ সমাধান লিখা। লগতে f(0)=1 আৰু g(0)=2 চর্ত সাপেক্ষেপ্রণালীটোৰ সমাধান x=f(t), y=g(t) উলিওঁৱা। 5+2+3=10

(h) Solve the following : 5+5=10 তলত দিয়াবোৰৰ সমাধান উলিওৱা ঃ

(i) 
$$\frac{dy}{dx} + y = f(x)$$
 where (য'ত)

$$f(x) = \begin{cases} 2, & 0 \le x < 1 \\ 0, & x \ge 1 \end{cases}, y(0) = 0$$

(ii) 
$$\frac{d^2y}{dx^2} - y = 3x^2e^x$$

Paper: MAT-HG-3026

## (Linear Programming)

Full Marks: 80

Time: Three hours

# The figures in the margin indicate full marks for the questions.

### OPTION-B

1. Choose the correct option:  $1\times10=10$ 

(i) The linear programming problem (LPP)

Maximize  $x_1 + x_2$ 

subject to  $x_1 + x_2 \le 1$ 

$$-3x_1 + x_2 \ge 3$$

$$x_1, x_2 \ge 0$$

has

- (a) no feasible solution
- (b) unique optimal solution
- (c) alternate optimal solution
- (d) unbounded solution

- (ii) A basic feasible solution (B.F.S) to an LPP is called degenerate, if
  - (a) all the basic variables are zero
  - (b) at least one of the basic variables is zero
  - (c) at most one of the basic variables is zero
  - (d) none of the basic variables is zero
- (iii) Which of the following statement(s) is/
  are correct?
  - Statement I: A B.F.S. to an LPP must correspond to an extreme point of the covex set of all the feasible solutions to the LPP.
  - Statement II: Every extreme point of the convex set of all the feasible solutions to an LPP is a B.F.S.
  - (a) I only
  - (b) II only
    - (c) Both I and II
- (d) Neither I nor II

(iv) The optimal value of the objective function of the LPP

Maximum  $3x_1 + 2x_2$ 

subject to  $x_1 + x_2 \le 6$ 

$$2x_1 + x_2 \le 6$$

$$x_1, x_2 \ge 0$$

is obtained at the point

- (a) (2,3)
- (b) (3,2)
- (c) (0,6)
- (d) (6,0)
- (v) If an LPP has a feasible solution, then
  - (a) it also has a B.F.S
  - (b) it has infinite number of B.F.S.
  - (c) it can never have a B.F.S.
  - (d) it cannot have an optimal solution
  - (vi) Choose the incorrect statement:
    - (a) The convex combination of a finite number of optimal solutions to an LPP is again an optimal solution to the problem.

- (b) For the solution of any LPP by simplex method, the existence of initial B.F.S. is always assumed.
- (c) Big-M method is used to find the solution of LPP having artificial variables.
- (d) In phase I of the two-phase simplex method, the sum of the artificial variables is maximized subject to the given constraints.

## (vii) Choose the incorrect statement:

- (a) The dual of the dual is the primal.
- (b) In a primal-dual pair, the dual problem must always be of the minimization type.
- (c) The optimal values of the primal objective function and that of its dual are same.
- (d) If the primal problem has m constraints in n variables, then its dual will have n constraints in m variables.

- (viii) A transportation problem is balanced, if
- (a) the number of sources equals the number of destinations
  - (b) there is no real distinction between sources and destinations
  - (c) total demand equals total supply irrespective of the number of sources and destinations
    - (d) total demand and total supply are equal and the number of sources equals the number of destinations
  - (ix) In an assignment problem involving six workers and five jobs, total number of assignments possible is
    - (a) 5
    - (b) 6
- (c) 11
  - (d) 30

- (x) If the value of a game is zero, then it is called
  - (a) finite game
  - (b) infinite game
  - (c) fair game
  - (d) unfair game
- 2. Answer the following questions: 2×5=10
  - (a) Solve the following LPP graphically:

Maximize 
$$2x_1 + 3x_2$$

subject to 
$$x_1 + 2x_2 \le 4$$

$$x_1 + x_2 \le 3$$

$$x_1, x_2 \ge 0$$

- (b) Show that the intersection of two convex sets is also a convex set.
- (c) Examine whether the following LPP has a degenerate B.F.S.:

Maximize 
$$4x_1 + 5x_2 + x_3$$

subject to 
$$2x_1 + x_2 - x_3 = 2$$

$$3x_1 + 2x_2 + x_3 = 3$$

$$x_1, x_2, x_3 \ge 0$$

(d) Write down the dual of the following LPP:

Minimize 
$$4x_1 + 6x_2 + 18x_3$$
  
subject to  $x_1 + 3x_2 \ge 3$   
 $x_1 + 2x_3 \ge 5$   
 $x_1, x_2, x_3 \ge 0$ 

(e) Use North-West Corner method to find an initial basic feasible solution to the following transportation problem:

|        | 1 | 2 | 3 | 4 | supply |
|--------|---|---|---|---|--------|
| 1      | 3 | 7 | 6 | 4 | 5      |
| 2      | 2 | 4 | 3 | 2 | 2      |
| 3      | 4 | 3 | 8 | 5 | 3      |
| Demand | 3 | 3 | 2 | 2 |        |

3. Answer any four of the following:

$$5 \times 4 = 20$$

(a) Show that the set of feasible solutions to an LPP is a convex set.

(b) Obtain all the basic solutions to the LPP —

Maximize 
$$x_1 + 3x_2 + x_3$$
  
subject to  $x_1 + 2x_2 + x_3 = 4$   
 $2x_1 + x_2 + 5x_3 = 5$   
 $x_1, x_2, x_3 \ge 0$ 

(c) Show that the following LPP has unbounded solution:

Maximize 
$$2x_1 + x_2$$
  
subject to  $x_1 - x_2 \le 10$   
 $2x_1 - x_2 \le 40$   
 $x_1, x_2 \ge 0$ 

(d) Solve the dual of the following LPP:

Maximize 
$$3x_1 - 2x_2$$
  
subject to  $x_1 \le 4$   
 $x_2 \le 6$   
 $x_1 + x_2 \le 5$   
 $x_2 \ge 1$   
 $x_1, x_2 \ge 0$ 

(e) Use Vogel's Approximation method to obtain an initial B.F.S. to the following transportation problem:

|     |    |    |    | Supply |
|-----|----|----|----|--------|
| 1 [ | 16 | 20 | 12 | 200    |
| 2   | 14 | 8  | 18 | 160    |
| 3 [ | 26 | 24 | 16 | 90     |

Demand 180 120 150

(f) The pay-off matrix of a two-person game is given below:

|   |     |   | В   |     |
|---|-----|---|-----|-----|
|   |     | I | II  | III |
|   | I   | 1 | 3   | 1   |
| Α | II  | 0 | - 4 | - 3 |
|   | III | 1 | 5   | -1  |

Find the best strategy of each player and the value of the game.

4. (a) If  $x_1=2$ ,  $x_2=4$  and  $x_3=1$  is a feasible solution to the LPP

Maximum 
$$5x_1 - 6x_2 + 7x_3$$
  
subject to  $2x_1 - x_2 + 2x_3 = 2$   
 $x_1 + 4x_2 = 18$   
 $x_1, x_2, x_3 \ge 0$ ,

reduce it to a basic feasible solution.

Use simplex method to solve the LPP —

Maximum 
$$x_1 - 3x_2 + 2x_3$$
  
subject to  $3x_1 - x_2 + 3x_3 \le 7$   
 $-2x_1 + 4x_2 \le 12$   
 $-4x_1 + 3x_2 + 8x_3 \le 10$   
 $x_1, x_2, x_3 \ge 0$ 

(b) Use two-phase simplex method to solve the LPP — 10

Minimize 
$$x_1 + x_2$$
  
subject to  $2x_1 + x_2 \ge 4$   
 $x_1 + 7x_2 \ge 7$   
 $x_1, x_2 \ge 0$ 

Or

Use Big-M method to solve the LPP-

Maximize 
$$3x_1 - x_2$$

subject to 
$$2x_1 + x_2 \ge 2$$
  
$$x_1 + 3x_2 \le 3$$

$$x_2 \leq 4$$

$$x_1, x_2 \ge 0$$

(c) Write down the solution to the following LPP by solving its dual: 10

Minimize 
$$15x_1 + 10x_2$$
subject to 
$$3x_1 + 5x_2 \ge 5$$

$$5x_1 + 2x_2 \ge 3$$

$$x_1, x_2 \ge 0$$

#### Or

State and prove the complementary slackness theorem.

(d) Find an optimal solution to the following transportation problem: 10

|        | 1  | 2  | 3  | 4  | supply |
|--------|----|----|----|----|--------|
| 1      | 3  | 6  | 8  | 5  | 20     |
| 2      | 6  | 1  | 2  | 5  | 28     |
| 3      | 7  | 8  | 3  | 9  | 17     |
| Demand | 15 | 19 | 13 | 18 |        |
|        |    |    |    |    |        |

Or

Apply the Hungarian method to solve the following assignment problem:

|   | I  | II | III | IV |
|---|----|----|-----|----|
| A | 87 | 85 | 71  | 38 |
| В | 91 | 89 | 75  | 34 |
| C | 70 | 72 | 86  | 75 |
| D | 37 | 35 | 21  | 88 |