Total number of printed pages-7

3 (Sem-5/CBCS) PHY HC 2

2021 (Held in 2022)

PHYSICS

(Honours)

Paper: PHY-HC-5026

(Solid State Physics)

Full Marks: 60

Time: Three hours

The figures in the margin indicate full marks for the questions.

- 1. Choose the correct answer from the following: $1 \times 7 = 7$
 - (a) The Miller indices of the plane parallel to x and z axes are
 - (i) (1 0 0)
 - (ii) (0 0 1)
 - (iii) (0 1 0)
 - (iv) (1 1 1)

- (b) The most unsymmetrical crystal system is
 - (i) cubic
 - (ii) orthorhombic
 - (iii) triclinic
 - (iv) trigonal
- (c) Above Curie temperature, a ferromagnetic material becomes
 - (i) antiferromagnetic
 - (ii) paramagnetic
 - (iii) diamagnetic
 - (iv) ferrimagnetic
- (d) Fermi level in n-type semiconductor lies
 - (i) in between the bottom of the conduction band and donor level
 - (ii) in between the top of valence band and acceptor level
 - (iii) midway between conduction band and valence band

- (iv) outside the gap between conduction band and valence band
- (e) Superconductivity state is perfectly
 - (i) paramagnetic
 - (ii) diamagnetic
 - (iii) ferromagnetic
 - (iv) ferrimagnetic
- (f) The number of different Bravais lattices in three dimensions is
 - (i) 3
 - (ii) 14
 - (iii) 167
 - (iv) unlimited.
- (g) Piezoelectric effect is the production of electricity by
 - (i) chemical effect
 - (ii) varying field
 - (iii) temperature
 - (iv) pressure

- 2. Give short answers of the following questions: 2×4=8
 - (a) What are primitive and non-primitive unit cells?
 - (b) State Wiedemann-Franz law.
 - (c) Define symmetry operation in crystalline solids. Mention different types of fold rotation axes that are permissible.
 - (d) What are ferroelectrics? Mention the chief characteristics of ferroelectric materials.
- 3. Answer any three from the following questions: 5×3=15

4

(a) Why are crystalline solids used for X-ray diffraction? Explain why visible light cannot be used for the determination of crystal structure.

An X-ray beam of frequency 10^{20} Hz undergoes diffraction from a set of plane with spacing 1.5 Å. What is the direction of first-order diffraction?

1+2+2=5

- (b) Explain Meissner effect. What are type II superconductors? 3+2=5
- (c) Define hysteresis. Draw hysteresis loop for ferromagnetic material and label different parts. What is ferromagnetic domain?

 1+2+2=5
- (d) What are phonons? Mention its characteristics. 2+3=5
- (e) Discuss the important conclusions of Kronig-Penney model.
- 4. Answer the following questions:

10×3=30

(a) What are reciprocal lattice vectors?

Obtain expressions for them. Show that the reciprocal lattice to a simple cubic is itself a simple cubic. 3+5+2=10

Or

Show that a monatomic linear lattice can be regarded as a low-pass filter.

10

(b) Explain polarisability of atoms. Derive Clausius-Mossotti equation between polarisability and dielectric constant of solid.

4+6=10

Or

Explain classical Langevin theory of diamagnetism. What is the essential condition for an atom to be diamagnetic?

8+2=10

(c) What is Hall effect? Find Hall coefficient in a metal where the carriers are only electrons. Why is Hall coefficient positive in some metals?

An *n*-type germanium strip, 1 mm wide and 1 mm thick, has a Hall coefficient of 10^{-2} m/coulomb. If for a current of 1 mA the Hall voltage produced inside the strip is 1 mV, calculate the strength of the magnetic field.

2+5+1+2=10

Or

Write short notes on: (any two)

 $5 \times 2 = 10$

- (i) Plasma oscillations
- (ii) Einstein's theory of specific heat
- (iii) Bragg's law
- (iv) Curie-Weiss law.