Total number of printed pages-4

3 (Sem-6/CBCS) PHY HC 1

2023

PHYSICS

(Honours Core)

Paper: PHY-HC-6016

(Electromagnetic Theory)

Full Marks: 60

Time: Three hours

The figures in the margin indicate full marks for the questions.

- 1. Answer *all the seven* questions: $1 \times 7 = 7$
 - (a) What do you mean by isotropic medium?
 - (b) What is a half wave plate?
 - (c) Write the expression for Lorentz gauge.
 - (d) How is refractive index related with dielectric constant?
 - (e) Write momentum of a photon in terms of its frequency.
 - (f) Write down the intrinsic impedance for free space.

Contd.

BIKALI COLLEGE LIBRARY

- (g) What is cladding in di-electric waveguide?
- 2. Answer the following questions: 2×4=8
 - (a) What is Nicol prism? Draw a neat diagram of it.
 - (b) Find numerical aperture of a step index fibre.
 - (c) Calculate the Skin depth for an EM wave of frequency 100 MHz in copper. Given, conductivity for $Cu = 6.25 \times 10^7 \, mho/m \text{ and}$ $\mu_0 = 4\pi \times 10^{-7} \text{ henry/meter}$
 - (d) Find expression of electric field in terms of scaler and vector potentials.
- 3. Answer any three questions: 5×3=15
 - (a) Using the concept of displacement current density, derive the expression for EM wave in free space.
 - (b) Show that EM waves are transverse in nature.
 - (c) How will you use Babinet's compensator to analyse polarisation of light?

BIKALI COLLEGE LIBRARY

- (d) Explain the terms Levo-rotatory and Dextro-rotatory. A 15 cm tube containing sugar solution of sp. rotation 66° shows optical rotation 7°. Find strength of the solution. 1+1+3=5
- (e) What is a dielectric waveguide? Find the condition of internal reflection at the two boundaries of the waveguide.

 2+3=5
- 4. Answer any three of the following: 10×3=30
 - (a) Derive the expression for EM energy flux coming out of a surface. What is the significance of Poynting vector?

 8+2=10
 - (b) (i) Derive the expression for total internal reflection using EM wave equation where \vec{E} is parallel to the plane of incidence.
 - (ii) An EM wave in free space has electric field given by $\vec{E} = 20 \cos(3y + 4z 0.5ct) \hat{i}.$ What is its propagation vector? Given $c = 3 \times 10^8 \, m/sec.$ 8+2=10

- (c) Using Fresnel equations, show that the amplitude reflection coefficient for \vec{E} parallel to the plane of incidence is equal to zero if sum of angle of incidence and polarising angle is $\frac{\pi}{2}$ and hence derive Brewster's law. Also sketch the variation of amplitude reflection co-efficients for both perpendicular and parallel components of \vec{E} .
- (d) What is meant by rotatory polarisation?

 Describe the theory and working of
 Laurent's half-shade polarimeter.

 2+3+5=10
- (e) Equations of two electric field vectors oscillating in perpendicular direction are given by $\vec{E}_1 = \hat{i} a_1 \cos(kz \omega t)$ and $\vec{E}_2 = \hat{j} a_2 \cos(kz \omega t + \theta)$, assuming time variation of the resultant field at z = 0, find the state of polarisation (SOP) of the resultant at different values of θ .
- (f) Using Maxwell's equation, derive the Fresnel's wave equation in anisotropic medium.

4